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in detail. The result is that the same upper bound as before is re-
quired for kv, but the lower bound on h decreases as the number
of vehicles taken into account by the controller increases.
For the bi-directional control strategy, platoon stability is en-
sured without any restriction on the time headway, but the re-
sults for jerk limitation depend on whether or not the transfer
functions corresponding to the look-ahead and look-astern as-
pects are identical. In the symmetrical case, the previous upper
bound on kv is again required, and when combined with the re-
quirement of collision avoidance, it imposes a lower bound for
the inter-vehicular spacing which is dependent on the length of
the platoon, although independent of the speed. This constraint,
however, appears to be avoidable in the asymmetrical case with
kv = 0, where the jerk limitation bound is replaced by a sim-
ilar one on kp /kv— if kv— > +/kp and the control parameters
for the last vehicle in the platoon are appropriately chosen. The
condition obtained for collision avoidance is then compatible
with the other constraints required, provided that the parameters
in the control laws are allowed to take arbitrarily large values.
It is not, of course, obvious that conclusions of the kind obtained here
will remain valid when more realistic models are considered, especially
with nonlinear effects being explicitly taken into account. Indeed, even
in the linear case, introducing a time lag between the control signal
and the consequent acceleration, via (3), can result in a lower bound on
the headway being necessary for string stability [8]. Nevertheless, the
simple treatment given here may at least serve to indicate what can be
expected to be found from a more general investigation.

iii)
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Bounding the Parameters of Linear Systems
With Input Backlash

V. Cerone and D. Regruto

Abstract—In this note we present a two-stage procedure for deriving
parameters bounds of linear systems with input backlash when the output
measurement errors are bounded. First, using steady-state input-output
data, parameters of the nonlinear dynamic block are tightly bounded.
Then, given a suitable PRBS input sequence we evaluate tight bounds
on the unmeasurable inner signal which, together with noisy output
measurements are employed for bounding the parameters of the linear
dynamic system.

Index Terms—Backlash, bounded uncertainty, errors-in-variable, output
errors, parameter bounding.

I. INTRODUCTION

Control systems components, such as sensors and actuators, often
exhibits backlash which, indeed, is a typical characteristic of mechan-
ical connections (see, e.g. [1]). Backlash (see Fig. 1) can be classified
as a hard (i.e. non-differentiable) and dynamic nonlinearity. It is well
known that this kind of nonlinearity may often cause delays, oscilla-
tions and inaccuracy which severely limit the performance of control
systems (see, e.g. [2]). To cope with these limitations, either robust or
adaptive control techniques can be successfully employed (see, e.g.,
[3], and [4] respectively) which, on the other hand, require the charac-
terization of the nonlinear dynamic block. Amazingly, there are only
few contributions in the literature on the identification of systems with
nonstatic hard nonlinearities ([5]). Therefore, the identification of sys-
tems with unknown backlash is an open theoretical problem of major
relevance to applications.

The configuration we are dealing with in this note, shown in Fig. 2,
closely resembles that of a Hammerstein model which in turn consists
of a static nonlinear part A" followed by a linear dynamic system. The
identification of such a model relies solely on input—output measure-
ments, while the inner signal x; is not assumed to be available. Iden-
tification of the Hammerstein structure has attracted the attention of
many authors, as can be seen in [6] and [7]. It must be stressed that ex-
isting identification procedures mostly require that the nonlinearity be
static and differantiable, usually a polynomial (see, e.g., [8]-[10] and
the references therein). On the side of linear systems with hard input
nonlinearities, Bai [5] considers the case of nonlinearities parameter-
ized by one parameter. The proposed algorithm, based on the idea of
separable least squares, can be applied to several common static and
nonstatic input nonlinearities.

In identification, a common assumption is that the measurement
error 7 is statistically described. A worthwhile alternative to the
stochastic description of measurement errors is the bounded-errors
characterization, where uncertainties are assumed to belong to a given
set. In the bounding context, all parameter vectors belonging to the
feasible parameter set (FPS), i.e., parameters consistent with the
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Fig. 2. SISO discrete-time linear system with input backslash .

measurements, the error bounds and the assumed model structure, are
feasible solutions of the identification problem. The interested reader
can find further details on this approach in a number of survey papers
(see, e.g., [11]-[13].

In this note, we present a scheme for the identification of linear sys-
tems with input backlash. More precisely, we address the problem of
bounding the parameters of a stable single-input—single-output (SISO)
discrete-time linear system with unknown backlash at the input (see
Fig. 2) when the output error is considered to be bounded. Note that the
inner signal & (t) is not supposed to be measurable. To the authors’ best
knowledge, no contribution can be found in the literature which address
the previously described identification problem, except for the authors’
work [14]. The results presented here, significantly improve paper [14],
namely: a) a more general model of the backlash is considered; b) eval-
uation of the backlash parameters bounds and inner signal bounds does
not rely any more on graphical inspection of the two-dimensional pa-
rameter space, instead a couple of optimization results are given which
provide tight bounds both on parameters and unmeasurable signal for
any given number of steady state measurements; and c) the simulated
example has been revised accordingly. The note is organized as fol-
lows. Section II is devoted to the formulation of the problem. In Sec-
tion III, parameters of the nonlinear block are tightly bounded using
input-output data collected from the steady-state response of the system
to a square wave input. Then, in Section IV, through a dynamic exper-
iment, for all u+ belonging to a suitable pseudo random binary signal
(PRBS) sequence {u:}, we compute tight bounds on the inner signal
which, together with noisy output measurements are used for bounding
the parameters of the linear part. A simulated example is reported in
Section V.

II. PROBLEM FORMULATION

Consider the SISO discrete-time linear system with input backlash
depicted in Fig. 2, where the nonlinear block transforms the input signal
u; into the unmeasurable inner variable z; according to the following
map (see, e.g., [2])

foru, < z;
for u; > zr D
for z; < us < zp

mi(we + 1),
my(uy — ¢ ),

Lt—1,

Ty =
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where m; > 0, m, > 0,¢ > 0, ¢, > 0 are constant parameters
characterizing the backlash and

~ Ti—1
z = —C

my s

+er (@3]

are the u-axis values of intersections of the two lines, with slopes m;
and m,., with the horizontal inner segment containing x;— . The back-
lash characteristics is depicted in Fig. 1. The linear dynamic part is
modeled by a discrete-time system which transforms x; into the noise-
free output w, according to the linear difference equation

A(g Hwe = B¢ M 3)

where A(qil) =14a1¢g +... 4 tnag ™" and B(qil) = by +
big 4.+ banfnb. In line with the work done by a number of
authors, in the contest of identification of block oriented systems, we
assume that: i) the linear system is asymptotically stable (see, e.g.,
[15]-[19)); ii) Z;ﬁo b; # 0, that is, the steady-state gain is not zero
(see, e.g. [17]-[19]); iii) an estimate of the process settling-time (see,
e.g., [20]) is available. Let y; be the noise-corrupted output

Ye = we + e 4)

Measurements uncertainty is known to range within given bounds A,
ie.,

[7:] < A )

Unknown parameter vectors v € R* and § € R” are defined, respec-
tively, as

Y=l v v ol =meaome o] ©
6" =la ana bo b brus) )
where na +nb+1 = p. It is easy to show that the parameterization of
the structure of Fig. 2 is not unique. To get a unique parameterization,
in this work we assume, without loss of generality, that the steady-state
gain of the linear part be one, that is
nb
27:0 by

= ————=1.
SRR TS Sy ®

In this note, we address the problem of deriving bounds on parameters
~ and ¢ consistently with given measurements, error bounds and the
assumed model structure.

III. ASSESSMENT OF TIGHT BOUNDS ON THE NONLINEAR STATIC
BLOCK PARAMETERS

Here, we exploit steady-state operating conditions to bound the pa-
rameters of the backlash. The noisy output sequence is collected from
the steady-state response of the system to a set of square wave inputs
with different amplitudes. Due to the fact that the backlash deadzone
is unknown (its evaluation is the main purpose of this section) we sug-
gest to choose the input amplitude in such a way that the output shows
any nonzero response. For each value of the input square wave am-
plitude, only one steady-state value of the noisy output is considered
on the positive half-wave of the input and one steady-state value of
the noisy output on the negative half-wave. Thus, given a set of square
wave inputs with M different amplitudes, 204 steady-state values of
the output are taken into account. We only assume to have a rough idea
of the settling time of the system under consideration, in order to know
when steady-state conditions are reached, so that steady-state data can
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Fig.3. Steady-state behaviour of the system under consideration when g = 1.

be collected. Indeed, under conditions 1)—iii) stated in Section II, com-
bining (1), (3) and (4) at steady-state, we get the following input—output
description involving only the parameters of the backlash:

¥i = my (i — ) +iji,

fora; > Ly, i=1,...,M )
m,
g =mu(t; + ci) + 175,
fora; < =L — ¢,  j=1,....M (10)
my

where the triplets {u;,y;,7:} and {u,,¥;,7,} are collections of
steady-state values of the known input signal, output observation and
measurement error taken during the positive and the negative square
wave, respectively. A block diagram description of the steady-state
response is depicted in Fig. 3 for (9) only; (10) leads to a similar
block diagram representation. Since the pairs (my, ¢;) and (m,, ¢, )
affect the collected measurements, i.e., (9) and (10), separately, we
can define the feasible parameter region of the backlash as

D, =D, D, an
where
D, = {mr,cr eERT g = me(; — ) + i,
|7:| < Ams,i=1,..., M} (12)
D, = {mic € R : §; = mi(ii; + ) + 7,
17,1 < Al j=1,..., M} (13)

where {A7;} and {A7};} are the sequences of bounds on measure-
ments uncertainty. From definition (11) it can be seen that D is ex-
actly described by the following constraints in the parameter space:

gi —my(ui —cr) > — A,

i — me(; — cr) <A, my > 0,¢ >0,

P=1.... M (14)
Uj — (i +e) 2 — A,
g5 —my(a; + ) <A, m > 0,¢ >0,

j=1,.... M. (15)

Remark 1: Df,, and D} are two-dimensional sets lying on the
(my, c;)-plane and the (m,,c,)-plane, respectively, i.e., they are
disjoint sets, which means that they can be handled separately. We
also note that they have the same mathematical structure, which means
that they enjoy the same properties. Thus, from here on the results
derived for one of the two sets, say D~,, will be also applicable to the
other set (D',). Throughout this note, it is assumed that D (D) is
a bounded set: To this end it suffices to collect at least two sets of
measurements with different inputs «. Here, we present some possible
descriptions of the feasible parameter set D7 Introductory definitions
and preliminary results are first given.

A. Definitions and Preliminary Results

Definition 1: b (7,) and h, (7,) are the constraints boundaries
defining the FPS D’ corresponding to the sth sets of data

hj(ﬁs) = {m, € R+,c,~ e RT 1Y+ Ans = m (T, — c,n)}
h, (ws) = {m,« €R",c. € RT 1Y, — Ans = my (s — c,«)} .
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Definition 2: Boundary of D7, = H(D?).
Definition 3: The constraints boundaries %, (77,) and b, (7,) are
said to be active if their intersections with /(D7) is not the empty set

nE@,) (VH (D)) #0 < b (@,) is active
hy (@) [V H (DY) #0 <= hy (w,) is active.

Remark 2: It is trivial to see that the constraints boundaries &, (7. )
and h, (7,) may either: a) intersect 7 (D7), or b) be external to
H(D?), hence, be external to D’,.

Definition 4: Edges of D,

() = bt () (D)

= {m,,,c,v €Dl g, +Ans =m,(Uus — c,v)}
hy (@,) =h; (7)) D}

= {mr,c,« €Dy, — Ans = m,(Us — c,«)}.

Definition 5: Constraints intersections. The set of all the pairs
(m.,c,.) € R* where intersections among the constraints occur is

I = {(mr,cr) € R*: {hf(m),h:(ﬁi)}
{0 @by (@)} # i = L. Mii # G} (16)

Definition 6: Vertices of D’,. The set of all the vertices of D7 is
defined as the set of all the intersection couples belonging to the feasible
parameter set D,

V(D) =15 (D5 (17)

B. Exact Description of D,

An exact description of D7, can be given in terms of edges, each
one being described, from a practical point of view, as a subset of an
active constraint lying between two vertices. An effective procedure for
deriving active constraints, vertices and edges of D7, is reported in the
Appendix.

C. Tight Orthotope Description of D7,

Edges provide exact description of DZ which, on the downside,
could be not so easy to handle. A somewhat more practical description,
although approximate, can be obtained by the computation of the
following orthotope outer-bounding set 37 tightly containing D7 :

Bl ={7€R" :v, = + 67,671 < Avj, = 1,2} (18)
where
. »7,1.“iu + ,}’,1_[1ax o ,7}11@\' _ ')/;'ﬂin
v = % Ay = 3 19
Jman — . max _ e 20
Rt WHGHDHL{ Vi vné%}; F] (20)

Since constraints (15) defining D~ are nonlinear in 2, and ¢,, at least
in principle the solution of the previous optimization problems (20)
requires the use of nonconvex optimization techniques which, however,
do not guarantee the finding of the global optimal solution. Problems
(20) can be solved thanks to the result reported later.

Proposition 1: The global optimal solutions of problems (20) occur
on the vertices of D7.

Proof: First, i) we notice that each level curve of functionals
(20)—parallel lines to m,.-axis and ¢, -axis respectively—intersect the
boundary of each constraint in (15) only once. Next, ii) objective func-
tions in (20) are monotone which implies that the optimal solution lies
on the boundary of D~. Thanks to i), the optimal value cannot lie on one
edge between two vertices: if that was true, it would mean that there is
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a suboptimal value where the functional intersect the edge twice: That
would contradict i). Then the global optimal solutions of problems (20)
can only occur on the vertices of D7 .

Remark 3: Given the set of vertices V(D7) computed via the pro-
cedure of the Appendix, the evaluation of (20) is an easy task since it
only requires the calculation of a) the objective functions on a set of
points < 4M and b) the maximum over a set of real values.

IV. BOUNDING THE PARAMETERS OF THE LINEAR DYNAMIC MODEL

In the second stage of our procedure, we evaluate bounds on the pa-
rameters of the linear dynamic block. In this stage, we excite the system
to be identified with a PRBS which takes the values £u*. We recall that,
thanks to its nice properties, a PRBS input is successfully employed in
linear system identification [21], [22]. Although PRBS inputs are not
suitable for nonlinear system identification in general [5], [23] since it
may not adequately excite the unknown nonlinearity, in [24] it is shown
that such a signal can be effectively used to decouple the linear and
nonlinear parts in the identification of Hammerstein model with static
nonlinearity. In this note we show that the use of a PRBS sequence is
profitable for the identification of linear system with input backlash.
The key idea underlying our contribution is based on the following re-
sult.

Result 1: Under a PRBS input whose levels are +u*, u* > ¢ and
—u* < —¢y, the output of a backlash described by (1) is still a PRBS
with levels 2 = m, («* — ¢ ), 2" = m(u* — ¢).

The proof of Result 1 is not reported since it is a trivial one.

Given the exact description of D!, tight bounds on the magnitude z*
of the unmeasurable pseudo random inner signal ; can be computed
Vt through the following expressions

—*min
xr

= min m,»(u* —¢.), foru*>e,
my,cr€EDT
o
—*xmax * *
T = max_ m,(u — er), foru™ > ep. 21
D)"

mp,cr€DL

Computation of bounds in (21) requires, at least in principle, the solu-
tion of two nonconvex optimization problems with two variables and
4M constraints. However, the computational efforts can be dramati-
cally reduced thanks to the results reported later, where we exploit the
following definition.

Definition 7: x-level curve of the objective function to be optimized

gr(u™,x) = {m, eER . c,eRT iz =m (v = (’,«)} (22)

Proposition 2: The global optimal solutions of problems (21) occur
on the vertices of D7 .

Proof: First, i) we notice that the each x-level curve g.(u*, )
intersect each constraint boundary in (15) only once. Next, ii) the ob-
jective function (22) is a monotone function which implies that the op-
timal solution lies on the boundary of DZ. Thanks to i) the optimal
value cannot lie on an edge between two vertices: If that was true, it
would mean that there is a suboptimal value where the functional inter-
sect the edge twice: That would contradict i). Then the global optimal
solutions of problems (21) can only occur on the vertices of D,

Here, same comments as Remark 3 apply.
Now, if we define the quantities

—*min —xmax —xmamr —*min
T + 7z —

A.Tt =

2 2 23)

ry =
the following relation can be established between the unknown inner
signal x¢ and the central value x7:

(24)
(25)

xy = + by
|62 < Ay.

We can now formulate the identification of the linear model in terms
of the noisy output sequence {y:} and the uncertain inner sequence
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Fig. 4. EIV setup for bounding the parameters of the linear system.

{«f} as shown in Fig. 4. Such a formulation is commonly referred to
as an errors-in-variables (EIV) problem, i.e., a parameter estimation
problem in a linear-in-parameter model where the output and some or
all the explanatory variables are uncertain. This stage of the procedure
is quite standard and it will not be discussed in the note. The interested
readers can find the details in [9], [14], and [25].

Remark 4: A possible limitation of the proposed approach is that
the identification of the linear system relies on computed bounds of
the inner signal which, in turn, depends on the accuracy of the back-
lash parameter estimates. However, it must be pointed out that both
the backlash feasible parameter set and inner signal bounds are tightly
computed, thus no conservatism is introduced in the proposed proce-
dure.

V. A SIMULATED EXAMPLE

In this section, we illustrate the proposed parameter bounding pro-
cedure through a numerical example. The system considered here is
characterized by a linear block with A(¢™") = (140.5¢7' —0.1¢7?)
and B(¢~ ') = (0.2¢" ' +1.2¢"?) and a nonsymmetric backlash with
m; = 0.24, m, = 0.26, ¢; = 0.035, ¢, = 0.070. Thus, the true pa-
rameter vectors are v = [m; ¢; m,. ¢,]" = [0.24 0.035 0.26 0.070]"
and # = [a1 az b1 b2]" = [0.5 —0.10.2 1.2]"*. We emphasize that the
backlash parameters have been realistically chosen: as a matter of fact
we considered the parameters of a real world precision gearbox which
features a gear ratio equal to 0.25 and a deadzone as low as 0.0524 rad
(= 3°) and simulated a possible fictitious nonsymmetric backlash with
gear ratio m; = 0.24, m, = 0.26 and deadzone ¢; = 0.035 (= 2°),
¢r = 0.070 (= 4°). Bounded absolute output errors have been consid-
ered when simulating the collection of both steady state data, {@s, §s },
and transient sequence {u,y:}. Here we assumed |:| < An, and
|i7s| < Aijs where 7 and 75, are random sequences belonging to the
uniform distributions U[—Amny, +An,] and U[—A7s, +Adjs] respec-
tively. Bounds on steady-state and transient output measurement er-
rors were supposed to have the same value, i.e., Ay, = A7, = Ay,
Eight different values of An were chosen in such a way as to simu-
late the measurement errors of eight commercial absolute binary en-
coder with a number of bits n;, varying from 8 to 15. For a given
An, the length of steady-state and the transient data are M = 50
and N = [100, 1000], respectively. The steady-state input samples
U, are equally spaced values from 0.6 and 3, while the transient input
sequence {u } is a PRBS which takes the values 1. Results about the
nonlinear and the linear block are reported in Figs. 5-7, respectively.
For low noise level (ny;; > 10 bits) and for all IV, the central estimates
of both the nonlinear static block and the linear model are consistent
with the true parameters. For higher noise levels (ng;; < 10 bits),

both ¢ = [m®, ¢°] and #° give satisfactory estimates of the true pa-
rameters. As the number of observations increases (from N = 100
to N = 1000), parameter uncertainty bounds A¢; decreases, as ex-
pected.

VI. CONCLUSION

A two-stage parameter bounding procedure for linear systems with
input backlash in presence of bounded output errors has been outlined.
First, using steady-state input—output data the two parameters of the
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Fig. 5. Backlash parameter identification: central estimates (dotted) and pa-
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Fig. 7. Linear system parameter identification: central estimates (dotted) and
parameters uncertainty intervals (shaded) versus encoder resolution (IN =
1000).

backlash have been tightly bounded. Then, for a given input transient
sequence we have computed bounds on the unmeasurable inner signal
which, together with output noisy measurements have been used to
overbound the parameters of the linear part. The numerical example
showed the effectiveness of the proposed procedure.
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APPENDIX

In this appendix, the procedure for the computation of vertexes and
active constraints defining the feasible parameter set D, is presented.
In order to simplify the presentation of the algorithm, the symbol V
is used instead of V(D7) and the following additional symbols and
quantities are introduced: H/, is a list of active constraints boundaries,
that is, each element H , (k) of the list is an active constraint boundary;
the expression X «— {z} means that the element z is included in the set
or list X; Dﬁ,}( s) is the set of all the parameter of the backlash which
are consistent with the first s measurement, the error bound and the
assumed backlash model structure. A formal description of D7 (s) is

Dl(s) = {mr,c, ERT .y = me (i — ) + i
il < Ay i=1,...,5}

(26)

The proposed procedure (see the Algorithm that follows) works in four
stages. First, the active constraints boundaries and the vertexes of the
set D7 (2) are characterized exploiting Definitions 1, 3, 5, and 6 of
Section III. Then, for each new measurement u, all the intersections
among the constraints boundaries 2" (%) and A~ (@s) and the ac-
tive constraints boundaries contained in the list H;, are computed; all
such intersections are temporarily included in the set V; the constraints
boundaries k™t (ws) and h™ (w,) are included in the list H . Further,
the vertexes of D, () are obtained rejecting the constraints boundaries
intersections which do not satisfy all the constraints generated by the
first s measurements (which implicitly defined D, (s)). Finally, the list
of active constraints boundaries H, is updated retaining only the con-
straints boundaries whose intersection is a vertex of D’ (s).

Algorithm

(Computation of vertexes and active constraints of D7)

1. begin

3.V« (@) Nh™ (@)}

4.V — {h (@) N hH (@)}

5.V — {h (@)Nh™ (u)}.

6. Hy — {ht (@), ht (@), k™ (@), h (@)}
7. fors=3:1: M

8. L = length(H.);

9. ¢qg=10;

10. for}z=1:1:1L

11. Ve {hT(@)NH(2)}.
12. If »"(@,) ¢ Hr then

13. H;, — {h*(7@,)}.

14. end if

15. V— {h (us)Hr(2)}.
16. If h~(us) ¢ Hr then

17. H, — {h (ws)}.

18. end if

19.  end for

20 V={VNDi(s)}

21. fork=1:1: length(Hy)
22. If3) #k:{H. (k) H.(j)} €V then
23. Hau:(q) = Hr (k).
24. q=q+1.

25. end if

26. end for

27. Hr, = Huus.

28. end for

29. return Hy,.

30. return V.

31. end
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Closed-Loop Behavior of a Class of Nonlinear Systems
Under EKF-Based Control

Jeffrey H. Ahrens and Hassan K. Khalil

Abstract—We study the closed-loop behavior of the extended Kalman
filter (EKF) for a class of deterministic nonlinear systems that are trans-
formable to the special normal form with linear internal dynamics. We
argue that the closed-loop system is asymptotically stable and the estima-
tion error exponentially converges to zero. We compare the performance of
the EKF to a high-gain observer through simulation.

Index Terms—Kalman filtering, nonlinear control, observers, output
feedback control, singular perturbation.

[. INTRODUCTION

Since the 1970s, the extended Kalman flter (EKF) has seen suc-
cessful applications as a state estimator for nonlinear stochastic sys-
tems [9], [18]. In the noise free case, the EKF can be parameterized
to function as an observer for deterministic nonlinear systems. Sta-
bility and convergence properties were studied in the 1990s. An early
method for constructing deterministic observers as asymptotic limits
of filters appeared in [3]. Additional work on the convergence proper-
ties of extended Kalman filters used as observers has been conducted
in [4], [5], [8], and [15]-[17]. Early convergence results showed that
the EKF converges exponentially for general classes of systems, but
these results were mostly local. Efforts to expand the domain of at-
traction appeared in [4] and [15]. In [8], it was recognized that, for
a particular parameterization of the covariance matrices, the EKF is a
time-varying high-gain observer that asymptotically approaches a fixed
gain observer as the gain is pushed higher. Furthermore, it was shown
that the EKF is a global exponential observer for a class of nonlinear
systems transformable to the lower triangular form. This argument was
based on a global Lipschitz property for the system nonlinearities.

To this point, analysis of the closed-loop system under EKF feed-
back has been limited. A separation result for a Kalman-like observer
for a certain class of multiple-input-multiple-output (MIMO) nonlinear
systems was presented in [20]. It assumed boundedness of the states of
the closed-loop system and gave global results under global Lipschitz
conditions. Aside from very restrictive assumptions on the nonlineari-
ties, exponential stability of the estimation error does not guarantee the
behavior of the closed-loop system, even when the system under state
feedback is exponentially stable [19]. Hence, it seems appropriate to
study the behavior of the closed-loop system when an extended Kalman
filter is used as an observer. Toward that end, we relax the global Lip-
schitz condition and consider a class of systems transformable to the
special normal form with linear internal dynamics. Based on a param-
eterization of the Riccati equation, the closed-loop system under EKF
feedback is placed in the standard singularly perturbed form. We note
that by relaxing the global Lipschitz condition, difficulties may arise
as a result of the peaking phenomenon. Peaking in the estimates can
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